1,388 research outputs found

    First Stellar Abundances in the Dwarf Irregular Galaxy Sextans A

    Full text link
    We present the abundance analyses of three isolated A-type supergiant stars in the dwarf irregular galaxy Sextans A from high-resolution spectra the UVES spectrograph at the VLT. Detailed model atmosphere analyses have been used to determine the stellar atmospheric parameters and the elemental abundances of the stars. The mean iron group abundance was determined from these three stars to be [(FeII,CrII)/H]=-0.99+/-0.04+/-0.06. This is the first determination of the present-day iron group abundances in Sextans A. These three stars now represent the most metal-poor massive stars for which detailed abundance analyses have been carried out. The mean stellar alpha element abundance was determined from the alpha element magnesium as [alpha(MgI)/H]=-1.09+/-0.02+/-0.19. This is in excellent agreement with the nebular alpha element abundances as determined from oxygen in the H II regions. These results are consistent from star-to-star with no significant spatial variations over a length of 0.8 kpc in Sextans A. This supports the nebular abundance studies of dwarf irregular galaxies, where homogeneous oxygen abundances are found throughout, and argues against in situ enrichment. The alpha/Fe abundance ratio is [alpha(MgI)/FeII,CrII]=-0.11+/-0.02+/-0.10, which is consistent with the solar ratio. This is consistent with the results from A-supergiant analyses in other Local Group dwarf irregular galaxies but in stark contrast with the high [alpha/Fe] results from metal-poor stars in the Galaxy, and is most clearly seen from these three stars in Sextans A because of their lower metallicities. The low [alpha/Fe] ratios are consistent with the slow chemical evolution expected for dwarf galaxies from analyses of their stellar populations.Comment: 40 pages, 8 figures, accepted for publication in A

    The variable stellar wind of Rigel probed at high spatial and spectral resolution

    Full text link
    We present a spatially resolved, high-spectral resolution (R=12000) K-band temporal monitoring of Rigel using AMBER at the VLTI. Rigel was observed in the Bracket Gamma line and its nearby continuum in 2006-2007, and 2009-2010. These unprecedented observations were complemented by contemporaneous optical high-resolution spectroscopy. We analyse the near-IR spectra and visibilities with the 1D non-LTE radiative-transfer code CMFGEN. The differential and closure phase signal exhibit asymmetries that are interpreted as perturbations of the wind. A systematic visibility decrease is observed across the Bracket Gamma. During the 2006-2007 period the Bracket Gamma and likely the continuum forming regions were larger than in the 2009-2010 epoch. Using CMFGEN, we infer a mass-loss rate change of about 20% between the two epochs. We further find time variations in the differential visibilities and phases. The 2006-2007 period is characterized by noticeable variations of the differential visibilities in Doppler position and width and by weak variations in differential and closure phase. The 2009-2010 period is much more quiet with virtually no detectable variations in the dispersed visibilities but a strong S-shape signal is observed in differential phase coinciding with a strong ejection event discernible in the optical spectra. The differential phase signal that is sometimes detected is reminiscent of the signal computed from hydrodynamical models of corotating interaction regions. For some epochs the temporal evolution of the signal suggests the rotation of the circumstellar structures.Comment: Paper accepted in the A&A journa

    Identification of clinical infections of Leishmania imported into Australia: Revising speciation with polymerase chain reaction-RFLP of the kinetoplast maxicircle

    Full text link
    Copyright © 2019 by The American Society of Tropical Medicine and Hygiene. Leishmaniasis is a vector-borne disease caused by protozoan parasites of the Leishmania genus. In Australia, leishmaniasis is an imported disease that is presenting itself at increased rates because of international travel, the influx of immigrants, and deployment of military operations to endemic regions. Although Leishmania species are morphologically indistinguishable, there is a strong correlation between some causative species of leishmaniasis and the subsequent response to the treatments available and patient outcome. Consequently, identification of the infective species is imperative as misidentification can result in the administering of an ineffective drug. The aim of this study was to develop a simple diagnostic tool with high sensitivity and specificity, which is capable of detecting the presence of the parasite and accurately differentiating the causative species in question. Using the advantageous properties of the maxi-circle kinetoplast DNA, a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) targeting the ND7 gene was developed for the analysis of imported cases of human leishmaniasis in Australia. Designed as a dual analysis, concurrent PCR of Leishmania maxi-circle DNA and digestion with two separate enzymes (NlaIII and HpyCH4IV), this study provides an appraisal on 24 imported cases of leishmaniasis between 2008 and 2017. Five Leishmania species were reported, with members of the Viannia subgenus being the most common. The implementation of novel diagnostic procedures for leishmaniasis such as the one reported here is needed to establish a gold standard practice for the diagnosis and treatment of leishmaniasis

    Tomographic readout of an opto-mechanical interferometer

    Get PDF
    The quantum state of light changes its nature when being reflected off a mechanical oscillator due to the latter's susceptibility to radiation pressure. As a result, a coherent state can transform into a squeezed state and can get entangled with the motion of the oscillator. The complete tomographic reconstruction of the state of light requires the ability to readout arbitrary quadratures. Here we demonstrate such a readout by applying a balanced homodyne detector to an interferometric position measurement of a thermally excited high-Q silicon nitride membrane in a Michelson-Sagnac interferometer. A readout noise of \unit{1.9 \cdot 10^{-16}}{\metre/\sqrt{\hertz}} around the membrane's fundamental oscillation mode at \unit{133}{\kilo\hertz} has been achieved, going below the peak value of the standard quantum limit by a factor of 8.2 (9 dB). The readout noise was entirely dominated by shot noise in a rather broad frequency range around the mechanical resonance.Comment: 7 pages, 5 figure

    Eta Carinae: Binarity Confirmed

    Full text link
    We report the recovery of a spectroscopic event in eta Carinae in 1997/98 after a prediction by Damineli (1996). A true periodicity with P = 2020+-5 days (0.2% uncertainty) is obtained. The line intensities and the radial-velocity curve display a phase-locked behavior implying that the energy and dynamics of the event repeat from cycle to cycle. This rules out S Doradus oscillation or multiple shell ejection by an unstable star as the explanation of the spectroscopic events. A colliding-wind binary scenario is supported by our spectroscopic data and by X-ray observations. Although deviations from a simple case exist around periastron, intensive monitoring during the next event (mid 2003) will be crucial to the understanding of the system.Comment: 13 pages, accepted by ApJ Letters (January 2000

    On the photometric variability of blue supergiants in NGC 300 and its impact on the Flux-weighted Gravity-Luminosity Relationship

    Full text link
    We present a study of the photometric variability of spectroscopically confirmed supergiants in NGC 300, comprising 28 epochs extending over a period of five months. We find 15 clearly photometrically variable blue supergiants in a sample of nearly 70 such stars, showing maximum light amplitudes ranging from 0.08 to 0.23 magnitudes in the V band, and one variable red supergiant. We show their light curves, and determine semi-periods for two A2 Ia stars. Assuming that the observed changes correspond to similar variations in the bolometric luminosity, we test for the influence of this variability on the Flux-weighted Gravity--Luminosity Relationship and find a negligible effect, showing that the calibration of this relationship, which has the potential to measure extragalactic distances at the Cepheid accuracy level, is not affected by the stellar photometric variability in any significant way.Comment: 9 pages, 3 figures, 3 tables. Accepted for publication in the Astrophysical Journa

    The complete coding region of the maxicircle as a superior phylogenetic marker for exploring evolutionary relationships between members of the Leishmaniinae

    Full text link
    © 2019 Elsevier B.V. The mitochondrial DNA (mtDNA) is a potentially valuable phylogenetic marker given its presence across all eukaryotic taxa and its relative conservation in structure and sequence. In trypanosomatids, a homologue of the mtDNA referred to as the maxicircle DNA, is located within a specialised structure in the single mitochondrion of the trypanosomatids called the kinetoplast; a high molecular weight network of DNA composed of thousands of catenated minicircles and a smaller number of larger maxicircles. Unique to the kinetoplastid protists, the maxicircle component of this complex network could represent a desirable target for taxonomic inquiry that may also facilitate exploration of the evolutionary history of this important group of parasites. The aim of this study was to investigate the phylogenetic value of the trypanosomatid maxicircle for these applications. Maxicircle sequences were obtained either by assembling raw sequence data publicly accessible in online databases (i.e., NCBI), or by amplification of novel maxicircle sequences from trypanosomatid DNA using long-range (LR) PCR with subsequent Illumina sequencing. This procedure facilitated the generation of nearly complete maxicircle sequences (i.e., excluding the divergent region) for numerous dixenous and monoxenous trypanosomatid species. Annotation of each maxicircle sequence confirmed that their structure was conserved across all taxa examined. Phylogenetic analyses confirmed that Z. australiensis showed a greater genetic relatedness with the dixenous trypanosomatids of the genera Leishmania and Endotrypanum, as opposed to members of the monoxenous genera Crithidia and Leptomonas. Additionally, molecular clock analysis supported that the dixenous Leishmaniinae appeared approximately 75 million years ago during the breakup of Gondwana. In line with previous studies, our results support the Supercontinents hypothesis regarding the origin of dixenous Leishmaniinae. Ultimately, we demonstrate that the maxicircle represents an excellent phylogenetic marker for studying the evolutionary history of trypanosomatids, resulting in trees with very high bootstrap support values

    Unique growth pattern of human mammary epithelial cells induced by polymeric nanoparticles.

    Get PDF
    Due to their unique properties, engineered nanoparticles (NPs) have found broad use in industry, technology, and medicine, including as a vehicle for drug delivery. However, the understanding of NPs' interaction with different types of mammalian cells lags significantly behind their increasing adoption in drug delivery. In this study, we show unique responses of human epithelial breast cells when exposed to polymeric EudragitÂź RS NPs (ENPs) for 1-3 days. Cells displayed dose-dependent increases in metabolic activity and growth, but lower proliferation rates, than control cells, as evidenced in tetrazolium salt (WST-1) and 5-bromo-2'-deoxyuridine (BrdU) assays, respectively. Those effects did not affect cell death or mitochondrial fragmentation. We attribute the increase in metabolic activity and growth of cells culture with ENPs to three factors: (1) high affinity of proteins present in the serum for ENPs, (2) adhesion of ENPs to cells, and (3) activation of proliferation and growth pathways. The proteins and genes responsible for stimulating cell adhesion and growth were identified by mass spectrometry and Microarray analyses. We demonstrate a novel property of ENPs, which act to increase cell metabolic activity and growth and organize epithelial cells in the epithelium as determined by Microarray analysis

    Multi-periodic photospheric pulsations and connected wind structures in HD64760

    Get PDF
    We report on the results of an extended optical spectroscopic monitoring campaign on the early-type B supergiant HD64760 (B0.5Ib) designed to probe the deep-seated origin of spatial wind structure. This new study is based on high-resolution echelle spectra obtained with the FEROS instrument at ESO La Silla. 279 spectra were collected over 10 consecutive nights in 2003. From the period analysis of the line-profile variability of the photospheric lines we identify three closely spaced periods around 4.810 hrs and a splitting of +/-3%. The velocity - phase diagrams of the line-profile variations for the distinct periods reveal characteristic prograde non-radial pulsation patterns of high order corresponding to pulsation modes with l and m in the range 6-10. The three pulsation modes have periods clearly shorter than the characteristic pulsation time scale and show small horizontal velocity fields and hence are identified as p-modes. The beating of the three pulsation modes leads to a retrograde beat pattern with two regions of constructive interference diametrically opposite on the stellar surface and a beat period of 162.8hrs (6.8days). This beat pattern is directly observed in the spectroscopic time series of the photospheric lines. The wind-sensitive lines display features of enhanced emission, which appear to follow the maxima of the photospheric beat pattern.Comment: 18 pages, 21 figures (reduced resolution
    • 

    corecore